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Use of Cumulative Sums of Squares for Retrospective 
Detection of Changes of Variance 

Carla INCLAN and George C. TIAO* 

This article studies the problem of multiple change points in the variance of a sequence of independent observations. We propose a 
procedure to detect variance changes based on an iterated cumulative sums of squares (ICSS) algorithm. We study the properties of 
the centered cumulative sum of squares function and give an intuitive basis for the ICSS algorithm. For series of moderate size (i.e., 
200 observations and beyond), the ICSS algorithm offers results comparable to those obtained by a Bayesian approach or by likelihood 
ratio tests, without the heavy computational burden required by these approaches. Simulation results comparing the ICSS algorithm 
to other approaches are presented. 

KEY WORDS: Cumulative sum of squares; Multiple change points; Variance change. 

I. INTRODUCTION 

We study the detection of multiple changes of variance 
in a sequence of independent observations. There are series, 
particularly in the area of finance, that do not follow the 
usual assumption of constant variance underlying most 
models for time series. We consider series that present a 
stationary behavior for some time, then suddenly the vari- 
ability of the error term changes; it stays constant again for 
some time at this new value, until another change occurs. 

The statistical literature on changes of variance started 
with Hsu, Miller, and Wichern (1 974), who offered this for- 
mulation as an alternative to the Pareto distribution to model 
stock returns. Previous studies had pointed out the nonnor- 
mality of these series and suggested the use of a heavy-tailed 
distribution. Hsu, Miller, and Wichern proposed a normal 
probability model with a nonstationary variance subject to 
step changes at irregular time points. 

There are many works aimed at identifying the point of 
change in a sequence of independent random variables 
(Hinkley 197 1;Menzefricke 198 1;Smith 1975, 1980). Booth 
and Smith (1982) used the Bayes ratio to decide whether a 
series presents a single change of variance at an unknown 
point. Hsu (1977, 1979, 1982) studied the detection of a 
variance shift at an unknown point in a sequence of inde- 
pendent observations, focusing on the detection of points of 
change one at a time because of the heavy computational 
burden involved in looking for several points of change si- 
multaneously. Worsley (1986) used maximum likelihood 
methods to test a change in mean for a sequence of inde- 
pendent exponential family random variables, to estimate 
the change point, and to give confidence regions. His work 
focused on finding one change point at a time. 

For autocorrelated observations, Wichern, Miller, and Hsu 
(1976) studied an autoregressive model of order one, having 
a sudden variance change at an unknown point. Abraham 
and Wei (1 984) used a Bayesian framework to solve the same 
problem. Baufays and Rasson (1 985) estimated the variances 
and the points of change of maximum likelihood. Their 
method handles several points of change simultaneously, and 
improves on Wichern et al. by reducing the computational 

effort involved. Tsay ( 1988) discussed autoregressive moving 
average models allowing for outliers and variance changes 
and proposed a scheme for finding the point of variance 
change. Broemeling and Tsurumi (1987) studied structural 
change in econometric models using Bayesian techniques. 
Applications of change point models in areas other than fi-
nance include the work of Cobb (1978), Commenges, Seal, 
and Pinatel (1986), Haccou, Meelis, and van de Geer (1988), 
and Haccou and Meelis (1 988). 

The approach presented here uses cumulative sums of 
squares to search for change points systematically at different 
pieces of the series. It is based on a centered version of the 
cumulative sum of squares presented by Brown, Durbin, 
and Evans ( 1975). The search is done following an algorithm 
to find multiple change points in an iterative way. 

This article is organized as follows. Section 2 presents the 
centered cumulative sum of squares function Dk, its rela- 
tionship to the F statistic used to test equality of variances, 
the expected value of Dk under changes of variance, and the 
asymptotic distribution of maxk I Dk1 when the series has 
homogeneous variance. Section 3 introduces the ICSS al- 
gorithm and illustrates it using a financial " .ne series. Section 
4 reports a simulation study comparing the performance of 
the ICSS algorithm to other approaches and illustrates the 
cost of using the ICSS algorithm in comparison to other 
approaches, measuring cost in terms of the CPU time. 

2. CENTERED CUMULATIVE SUMS OF SQUARES 

The main interest is to study the variance of a given se- 
quence of observations retrospectively, so we can use all the 
information on the series to indicate the points of variance 
change. 

Let Ck = C a: be the cumulative sum of squares of a 
series of uncorrelated random variables { a,} with mean 0 
and variances a:, t = 1, 2, . . . , T. Let 

Ck kD ~ = - - - k = 1 , .  . . , T, with Do = D T =  0 (1) 
CT T '  

be the centered (and normalized) cumulative sum of squares. 
The plot of Dk against k will oscillate around 0 for series 
with homogeneous variance. When there is a sudden change 
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Figure 1. Examples of Cumulative Sums of Squares Plots. 

in variance, the plot of Dk will exhibit a pattern going out 
of some specified boundaries with high probability. These 
boundaries can be obtained from the asymptotic distribution 
of Dk assuming constant variance. 

Figure la  shows a series of N(0, 1) white noise with con- 
stant variance a2;Figure lb  presents the same series with 
two changes of variance, at t = 391 and t = 5 18. The variances 
are a: = 7;= 1, t = 1, . . . .  390; a: = 7: = .365, t = 391, 
. . . .  517; and a: = 7;= 1.033, t = 518,. . . .  700. Figure 1, 
c and d shows the Ck function, and Figure 1, e and f illustrates 
the Dk function for the two series presented in a and b. For 
the series with homogeneous variance, Ck presents roughly 
a straight line with slope a2 = 1. When there are changes in 
the variance, the plot appears as a broken line consisting of 
several straight pieces. 

The plot of Dk presents a better picture, because when 
there is a change in variance the slope of Ck changes slightly, 
being positive all the time, whereas the slope of Dk shows a 
drastic change, even a change of sign, creating a peak or a 
trough according to whether the variance changes to a smaller 
or a greater value. Besides, the horizontal is an easier point 
of visual reference than a straight line with positive slope. 
This behavior leads to the search for a variance change point 
via maxk I Dk I . Let k* be the value of k at which maxk I Dk I 
is attained. If this maximum absolute value exceeds a pre- 
determined boundary, then we may conclude that there is a 
change point near k* and take k* as an estimate of the change 
point. 

Under variance homogeneity, @ ? D ~  behaves like a 
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Brownian bridge asymptotically (see Sect. 2.3). From Table 
1, the asymptotic critical value is D35= 1.358. The two 
horizontal dashed lines in Figure 1, e and f are at k1.358, 
and we can detect in Figure If that the maximum of 

I DkI exceeds the boundary value at k* = 342. 

2.1 	 Relationship of D, to the F Statistic and the 
Likelihood Ratio 

For a fixed k, the value of Dk can be written as a function 
of the usual F statistic for testing equality of variances be- 
tween two independent samples. Specifically, let the first 
sample consist of observations ai . i = 1, . . . .k, with variance 
r;, and let the second sample be a,, j = k + 1, . . . .  T, 
with variance 7:. Then the F statistic for testing Ho: 
7; = 7: against H,: 7; < 7: is F ~ - k , k  = ((CT - Ck)/ 
( T -  k))/(Ck/k). 

Thus Dk can be expressed in terms of F ~ - k , kas 

For a fixed k, Dk(F)  is a monotone function of F ;  it depends 
only on k through k/ T. Note the important distinction: The 
F statistic is used with known k, whereas we will be looking 
for maxk I DkI to determine the location of the change point. 

If we assume that the { a,} are Normally distributed, with 
mean 0 and variances a:, t = 1, . . . .  T, then we can obtain 
the likelihood ratio for testing one change against no change 
in the variance. Let NT = 0 represent the case of no change 
and let NT = 1 represent the case of one change. The con- 
centrated log-likelihood for NT = 0 is 

where a = ( a , ,  . . . .  aT) ' .  Now let K be the point of change. 
Then the concentrated log-likelihood function for NT = 1 
and K is 

Table 1. Empirical and Asymptotic Quantiles of max, I D, / 

T 	 100 200 300 400 500 co 

P 90 SE 90 SE 90 SE qD SE 90 SE D;Lp 

.05 .44 .003 .47 ,003 .47 ,003 .48 ,003 ,049 ,003 ,520 

.I0 .50 ,003 .52 .003 .53 ,003 .53 ,003 ,054 ,002 ,571 

.25 .60 .004 .63 ,003 .63 ,003 .64 ,003 ,065 ,003 ,677 

.50 .75 ,004 .78 ,003 .78 ,003 .79 ,003 ,080 ,003 ,828 

.75 .94 ,004 .97 ,004 .97 ,004 .97 ,004 1 .OO ,004 1.01 9 

.90 1.14 ,006 1.16 ,006 1.18 ,007 1.18 ,006 1.20 ,006 1.224 

.95 1.27 ,009 1.30 ,004 1.31 ,008 1.31 ,010 1.33 ,009 1.358 

.99 1.52 ,004 1.55 ,012 1.57 ,028 1.57 ,020 1.60 ,018 1.628 

NOTE: Estimated from 10,000 replicates of serles of T independent N(0, I)observat~ons.D;, 
IS definedby P{sup, I WI < D;,) = p. 
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Figure 2. Approximate Expected Value of WD,for Series With One 
Change Point. Change points are (a) K = .25T, (b)K = .50T (c) K = .75T. 
Two values of A are shown on each plot: dotted line, A = 2; solid line, A 
= 3. 

The maximum likelihood estimator of K is obtained by max- 
imizing this function with respect to K. Hence the logarithm 
of the likelihood ratio for testing NT = 0 against NT = 1 is 

log 1 --D ) .  (5)- 2 ( T - K  

Note that although LRo,, and max, I D, I are related, they are 
not equivalent for finite T. Using a second-order Taylor's 
expansion of (5) as a function of D,, for large K and T - K, 
LRo,, = -max,{ T ~ D : / ( ~ K ( T  - K ) ) ) .  The function 
max, I D, I puts more weight near the middle of the series, 
thus inducing k* to be biased toward T/2. 

2.2 	 Expected Value of DkGiven the Variance 
Changes 

In this section we study the behavior of E[Dk], the ex- 
pected value of Dk, as a function of k. We consider the ex- 
pected value under different assumptions about the variance 
of the series. See Appendix A for the derivations. 

Consider the case where the series has one change point 
at K ] ;  that is, a: = 78 fort = 1, .  . . , K ]  and a: = 7: fort = K I  

+ 1, . . . , T. The value of E[Dk]  is, to order o(T-I),  a piece- 
wise linear function with a change of slope at K I .  Figure 2 
illustrates the influence of the location of the changepoint 
K I and the value of the ratio of variances A] = :/ i.Figure 
2 shows three plots corresponding to the change point at K ]  

= 25, K ,  = 50, and K I  = 75, with two values of A] for a series 
oflength T = 100. The values OfEIDk] have been multiplied 
by for comparison with the asymptotic boundaries 
k1.358 also shown in the plots. 

Note that the approximate E[Dk] has a symmetry in- 
volving both the location of the changepoint and the variance 
ratio. Let a[l : TI = { a , ,  a2, . . . , a7) be the original series 
to which Dk is applied, and let a[ T : 11 = {a7, a7-], . . . .  
a l  ) be the reversed series. Call g k ( ~ , ,  A,) the approximate 
expected value of Dk(a[l : TI); then the approximate ex- 
pected value OfDk(a[T:  11) is -gT-k(T- K , ,  l / A l ) .  The 
implications for the search of the changepoint are important: 
If the smaller variance corresponds to the shorter segment 

of the series, then it will be harder to find the changepoint 
using Dk. This interaction is also present in the F test for 
difference in variances. The power of the Ftest is higher for 
the case of the larger variance with the smaller degrees of 
freedom. The interaction is less important as the sample size 
increases. 

If there are two changepoints, located at K ,  and K ~ ,  with 
the corresponding variances of 78 for t = 1, . . . , K I  ,7: for t 
= K ,  + 1 , .  . . , KZ, and 7: for t = K~ + 1, . . . ,  T, then the 
approximate E[Dk] is a piecewise linear function of k, with 
changes of slope at K I  and KZ. Figure 3 shows the second- 
order approximation to E[Dk] when there are two change- 
points at K = (58,80) with T = 100. In the figure each of the 
six plots represents one of the six possible configurations of 
variances. One configuration has roas the smallest, the 
intermediate, and 7 2  the largest. In all, there are six ways of 
permuting the place of the small (S), medium (M), and large 
(L) variances. Figure 3 clearly illustrates the masking effect 
when there is more than one changepoint. In most cases 
these plots show a well-defined peak at one of the two 
changepoints; that is, the point most likely to be found when 
the Dk function is applied to a series with two changes of 
variance. The iterative algorithm presented in Section 3 is 
designed to lessen the masking effect, as the search for 
changepoints takes place one by one at different pieces of 
the series. 
2.3 	 Asymptotic Behavior of Dk Under 

Homogeneous Variance 
The asymptotic distribution of Dk when the random vari- 

ables {a,)  are identically distributed is that of a Brownian 

variances: variances: variances: 
(1.2,4) and (1,3,6) (1,4,2) and (1,6,3) (1.I/2,2) and (1,1/3,2) 
I-

variances: variances: variances: 
(1.1/2,1/4) and (1.1/2.1/6) (1,2,1/2) and (1.2,1/3) (1,1/4,1/2) and (l,l/6,1 

1 

2 


. . . . . .  

Figure 3. Approximate Expected Value of WD,for Series with Two 
Change Points at (KT, K ~ )  = (58, 80). Variance ratios are indicated on 
each plot. 
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bridge. The notation in this section follows closely that of 
Billingsley (1968), using n instead of T as the number of 
observations in the series {a ,  ) , i = 1, . . . , n .  

Let W represent a Brownian motion process, E [ W,] = 0, 
E [  W, W,] = s ,  0 r s < t. Let W0 denote a Brownian bridge, 
Wy = W, - tWl,  E[Wy]  = 0, E[w~w!] = ~ ( l- t) ,  0 
Is < t, and W! = W? = 0, with probability 1. 

Theorem I. Let a , ,  a2, . . . be a sequence of independent, 
identically distributed Normal(0, a:) random variables. Let 

Table 2. Percentage of Series Where max, / D, / < 1.358 

T 100 200 300 400 500 

'/ow) 97.13 96.51 96.31 96.07 95.53 
SE ,167 ,184 ,189 ,194 ,207 

NOTE: 10,000 replicates, series of T ~ndependent N(0,  1) observations. SE 
= V6(1 - p)/10.000. 

If M( t l  : T )  < D*, there is no evidence of variance changes 
Dk = Ck/Cn - kin, where Ck = Cfi=l a:. Then m~kin the series. The algorithm stops. 

-* 
a, 

WO. The proof is given in Appendix B. 
This asymptotic distribution determines the probability 

P{sup, 1 w I < D* ) , so that asymptotic quantiles of 
max, 1 D, I can be obtained. Table 1 compares selected 
asymptotic quantiles of max, I D, I with corresponding em- 
pirical quantiles for various series lengths obtained by sim- 
ulation. 

The standard errors were obtained as dp(1 - p)/nf 2, 
where n = 10,000 is the number of replicates and f is the 
density at the pth quantile, estimated with the relative fre- 
quency per unit for an interval of width .02 centered at the 
pth quantile. Table 2 gives the percentage of series for which 
maxk m 1 DkI < 1.358. The standard errors in this table 
are obtained as SE = Vb(l -$)/ 10,000, where p  ̂ is the pro- 
portion of series with maxk m I Dk I < 1.358. 

The 95th quantile of maxk \/T/2 I Dk / is always lower than 
the asymptotic value 1.358, thus leading to a smaller em- 
pirical type I error when testing for one change of variance. 
But, for T 2 200, the asymptotic approximation seems to 
perform well for practical use. 

3. DETECTIONS OF MULTIPLE CHANGES: 

THE ITERATED CUMULATIVE SUMS 


OF SQUARES ALGORITHM 


If we were concerned only with the possible existence of 
a single point of change, then the Dk function would provide 
a satisfactory procedure. But when we are interested in find- 
ing multiple points of variance change on an observed series, 
the usefulness of the Dk function becomes questionable be- 
cause of the masking effect. A solution is an iterative scheme 
based on successive application of Dk to pieces of the series, 
dividing consecutively after a possible changepoint is found. 
We now propose a systematic procedure to look for change- 
points in an effort to isolate each point. We use the notation 
a[tl  : t2] to represent the series a,,, a,,+l . . . ,a,,, tl < t2 and 
use the notation Dk(a[tl  : t2]) to indicate the range over 
which the cumulative sums are obtained. 

Iterated Cumulative Sums of Squares (ICSS) Algorithm 

Step 0. Let tl = 1. 
Step 1. Calculate Dk(a[t l  : TI) .  Let k*(a[tl : TI) be the 

point at which maxk I Dk(a[t l: TI) I is obtained, and let 

M(t1 : T) = max V( T - t l  + 1112 I Dk(a[tl : TI) I. 
l , < k < T  

If M( t l  : T )  > D*, consider that there is a changepoint 
at k*(a[tl  : TI)  and proceed to Step 2a. The value of D* is 
D T - ~  from Table 1 for the desired value ofp, usually p = .95. 

Step 2a. Let t2 = k*(a[tl  : TI) .  Evaluate Dk(a[t l  : t2]);  
that is, the centered cumulative sum of squares applied only 
to the beginning of the series up to t2. If M ( t l  : t2) > D*, 
then we have a new point of change and should repeat Step 
2a until M( t l  : tZ)< D*. When this occurs, we can say that 
there is no evidence of variance change in t = tl ,. . . ,t2 and, 
therefore, the first point of change is kfirSt = t2. 

Step 2b. Now do a similar search starting from the first 
changepoint found in Step 1, toward the end of the series. 
Define a new value for tl : let t l  = k*(a[tl : TI) + 1. Evaluate 
Dk(a[t l: TI), and repeat Step 2b until M ( t l  : T )  < D*. Let 
klast= t l  - I .  

Step 2c. If kfiTst = klaSt,there is just one changepoint. The 
algorithm stops there. If kfi,,, < k,,,,, keep both values as 
possible changepoints and repeat Step 1 and Step 2 on the 
middle part of the series; that is, t l  = kfi,,, + 1 and T = klaSt. 
Each time that Steps 2a and 2b are repeated, the result can 
be one or two more points. Call I\jT the number of change- 
points found so far. 

Step 3. If there are two or more possible changepoints, 
make sure they are in increasing order. Let cp be the vector 
of all the possible changepoints found so far. Define the two 
extreme values cpo = 0 and = T. Check each possible 
changepoint by calculating Dk(a[cpj-, + 1 : cpj+l I),  j = 1, 
. . . ,N ~ .  + 1 : cp1+~)If M ( C ~ ] - ~  > D*, then keep the point; 
otherwise, eliminate it. Repeat Step 3 until the number of 
changepoints does not change and the points found in each 
new pass are "close" to those on the previous pass. In our 
implementation of this algorithm, we consider that if each 
changepoint is within two observations of where it was on 
the previous iteration, then the algorithm has converged. 
This convergence is achieved in few iterations of Step 3. 
Note that during each iteration, the newly found points must 
be kept apart to make an entire pass through the series based 
on a single set of points. 

The actual implementation of this algorithm requires some 
controls over the number of iterations as a precaution to 
avoid cycling indefinitely. In the examples analyzed, as well 
as in extensive simulations performed, the limit of 20 iter- 
ations was never attained. 

We now illustrate the use of the ICSS algorithm with the 
series having two variance changes in Figure lb. From the 
Dk plot in Figure If, we find a possible changepoint at 
k* = 342. Now, cut the series and consider the first part 
a [ l  : 3421. The result is shown in Figure 4a, where the Dk 
(a[l  : 3421) path lies within the boundaries, so that kfirst 
= 342. Consider a[343 :7001. The resulting Dk(a[343 :7001) 
is shown in Figure 4b, where the maximum absolute value 
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0100 300 500 700 0 100 300 500 700 0100 300 500 700 

kS=342dropped, M=0.48 kS=397. M=1.53 kS=526, M-2.62 

(9) (h) 0) 

0 100 300 500 700 0100 300 500 700 0100 300 500 700 

k^=376, M=2.41 k'=526 mnfirmed, k 2 . 6 2  k'=376 mnfirmed, M-2.41 

(i) (k) (1) 

Figure 4. Sequence of D,Functions From the ICSS Algorithm, Applied 
to a Series of Independent Observations With Two Changes of Variance. 

exceeds the boundary value at k* = 526. Next, the plot in 
Figure 4c shows no further points of change in the range 
a[527 : 7001 and, therefore, k,,,, = 526. We now repeat the 
same process for the inner part of the series a[343 : 5261 and 
look for the "first" point of change within these values. Figure 
4, d-f illustrates this process. We find one more possible 
point of change at 397. Plots e and f lie within boundaries. 
At this point we have three possible points of change: cp ,  
= 342, cp2 = 397, and cp3 = 526. 

This procedure performs a systematic search for possible 
points of change working from the extremes towards the mid- 
dle of the series. But it can find too many points. Step 3 can 
help "fine tune7' the location of the points by checking each 
point given the adjacent ones; that is, checking cpl  by Dk 
(a[l  : 397]), checking cp2 by Dk(a[343 : 526]), and finally 
checking cp3by Dk(a[398 : 7001). This step is repeated until 
convergence-until the number of points does not change 
and their locations do not move by more than a specified 
amount. In our case we use two observations: once each cpi 
i = 1, . . . .  NT is within two units of where it was at the 
previous iteration, we consider that the algorithm has con- 
verged. Figure 4g shows that the point 342 is no longer sig- 
nificant after considering the adjacent ones. We now have 
cpl  = 397 and cp2 = 526. A second iteration is needed be- 
cause the number of points has changed. On the second 
check, the chosen points are c p ,  = 376 [see Fig. 4j] and cp2 
= 526 [see Fig. 4k]. Still another iteration is required because 
the distance from 397 to 376 is more than two observations. 
On the following iteration, the changepoints found are again 

cp ,  = 376 and cp2 = 526, and hence the algorithm has con- 
verged. 

In summary, we see for this example that the ICSS algo- 
rithm successfully eliminates the masking effect when there 
is more than one variance change. Specifically, the second 
changepoint t = 526 was not detected in the original 
Dk(a[l : 7001) in Figure If, and the final cp ,  = 376 was 
appreciably away from the initial point c p ,  = 342 and closer 
to the true first changepoint, 39 1. 

This algorithm can be included as part of the residual 
diagnostics for practitioners fitting time series models. Sim- 
ulation results show that when we apply the ICSS algorithm 
to residuals of autoregressive processes, we obtain results 
similar to those obtained when we apply the ICSS algorithm 
to sequences of independent observations (see Sect. 4.5). 

If the ICSS algorithm is programmed into a system that 
allows high resolution graphics, the user can look at the Dk 
plots as they are obtained. It is important to look at the plots, 
because a big outlier would create a significant peak in the 
Dk plot that might not be due to a variance change. In most 
cases it is easy to detect outliers affecting the Dk plot, because 
they will appear as sudden jumps; the slope of the Dk would 
not be changed. But it is advisable to complement the search 
for variance changes with a procedure for outlier detection 
(see Chang, Tiao, and Chen 1988). 

3.1 Example: IBM Stock Prices 

As an example, we apply the ICSS algorithm to a real data 
set. The series analyzed is the first difference of the logarithm 
of the IBM stock closing prices from May 17, 196 1, to No- 
vember 2, 1962, as reported by Box and Jenkins (1976). 
There is no substantial autocorrelation for this series. 

The analysis using the ICSS algorithm converges in the 
first iteration with k y  = 235 and k ;  = 279. Other authors 
have found similar results. Wichern, Miller, and Hsu fit an 
ARIMA(1, 1,O) to the logarithm of the stock price, obtaining 
6 = .13 and the changepoints estimates at 180 and 235. 
Baufays and Rasson (1985) found two changes of variance 
at observations 235 and 280. Tsay (1988) found one variance 
change at 237. The results that we found using the ICSS 
algorithm agree with the maximum likelihood estimates of 
Baufays and Rasson. A Bayesian analysis that allows both 
the variance and the autoregressive parameter to change at 
the same points (InclBn 199 1) indicates that there are both 
variance changes and parameter changes. The posterior 
modal values for the changepoints are the same points found 
by the ICSS algorithm. 

The series analyzed in this section illustrates the use of 
cumulative sums of squares to diagnose the existence of 
changes in variance. Using the estimates of the changepoints 
obtained with the ICSS algorithm, we can estimate the vari- 
ances for the different pieces of the series and use them to 
obtain a series with homogeneous variance. This "corrected 
series" should then be used to obtain other residual diag- 
nostics, like the Q statistic, which would be distorted if cal- 
culated with the series that has variance changes (see InclBn 
199 1). The Fortran program of the ICSS algorithm is avail- 
able from us upon request; send an electronic mail message 
to inclan@guvax.georgetown.edu. 

http:inclan@guvax.georgetown.edu
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Table 3. Standardization Formulas for the LR,-7," Statistic, n = 1,2,3 

NOTE: LR,,, requires the maximum likelihood estimators i and A = i:/ig 

4. SIMULATION EXPERIMENT 

The performance of different procedures used to determine 
the number of variance changes in a series can be measured 
in several ways; the main way is by the number of "correct 
identifications." Another aspect to consider is the compu- 
tational requirements of each approach, which can be mea- 
sured in terms of the CPU time. We now present the results 
of a simulation experiment to compare the performance of 
the ICSS algorithm with the likelihood ratio and a Bayesian 
approach. 

The simulation experiment has two separate parts, the 
first for one changepoint and the second for two changepoints 
in the generated series. For each part, we used 1,000 replicates 
per design point, each of them a series of length T of inde- 
pendent N(0, 1 )  random variables. The Gaussian random 
number generator is based on the modified polar method 
and uses uniform random numbers from the Bratley, Fox, 
and Schrage (1987)portable uniform random number gen- 
erator. The routines are programmed in Fortran and were 
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run in a Sparcstation 1+ at the Smeal College of Business -
of the Pennsylvania State University. 

The same series is subject to each of the procedures 
considered to facilitate paired comparisons between pro- 
cedures. For Part One, we used three series lengths ( T  = 

100,200, and 500),three locations of the changepoint ( K ,  

= .25T, .50T, and .75T) ,and two values for the variance 
ratio ( A= 2 and 3) .For Part Two, we used the same three 
series lengths ( T = 100, 200, and 500),three different sets 
oflocations ofthe change points [ ( K , ,  K ~ =) ( .33T, .66T) ,  
( .20T, .80T) ,  and (.58T, . 8 0 T ) ] ,  and six possible config- 
urations of variances ( 7 ; ,  7:, T ; ) ,  where we impose the 
condition that 7 ;  = 1 but keep the corresponding ratios 
A, = T : / T ~and A2 = T ; / T ; .Some of the permutations of 
the variances were eliminated based on symmetry consid- 
erations; for example, a series with variances ( 1 ,  2, 4)  is 
equivalent to a series with variances (4, 2, 1 )  taken in re- 
verse order. 

4.1. 	 Assessing the Evidence with Respect to the 

Number of Change Points Using Likelihood 

Ratio Tests and the Posterior Odds Ratio 


Before presenting the results of the simulation, we give 
some details about the procedures to detect multiple points 
of variance change using likelihood ratio tests and using pos- 
terior odds ratios. 

Let LR,,, denote the likelihood ratio statistic for 
testing Ho: NT = m against H a :  NT = n .  The expres- 

Table 4. Frequency Distribution of N, Obtained with the ICSS Algorithm, Likelihood Ratio Tests and Log Posterior Odds 
for Series with One Variance Change 

ICSS algorithm LR tests Log posterior odds 

A T K/T N r  o 1 2 2  o 1 2 2  o 1 

NOTE: For series with A = I, there are 10.000replicates for the ICSS algorithm; all other cases have 1.000replicates 

2 2  
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Table 5. Frequency Distribution of N, Obtained with the ICSS Algorithm, Likelihood Ratio (LR) Tests and Log Posterior Odds 
for Series with Two Variance Changes 

ICSS algorithm 
(Ki/T,- K ~ / T )  

NT 0 1 2 

sion for the special case LRo,l is given in (5). (For 
the general case, see Inclhn 199 1).  A strategy to deter- 
mine the number of changepoints is to  consider 
LRn-I ,n ,  for n = 1, 2, . . . . That is, if there is evidence in 
the data to  reject NT = n - 1, then consider one more 
change. 

The critical values for the tests must be obtained by sim- 
ulation, because this is not a regular problem. In the case of 
changepoints in the parameter of the exponential distribu- 
tion, Haccou and Meelis (1988) showed that the asymptotic 
null distribution of the likelihood ratio test for one change 
against no change is an extreme value distribution. The sim- 
ulation results of Inclhn (1 99 1) indicate that this asymptotic 
distribution may also apply to LR,,, here, and that we can 
standardize the LRn-l,n statistic according to the formulas 
in Table 3 for reference to the extreme value distribution 
with distribution function F ( x )= exp(-e-"). 

The posterior odds for assessing the evidence in the data 
about the number of change points are 

LR tests Log posterior odds 

n-m 

where p(NT = n I a )  is the posterior probability that the series 
has n changes of variance; p ( a ,  K INT) is the conditional 
probability for a = ( a l ,  . . . , a ~ ) 'and K = ( K I ,. . . , K N ~ ) '  

given the number of change points NT; X is the prior prob- 
ability of having a change in variance at each point in time; 
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Table 6. Summaries from the Sampling Distribution of k' for Series 
with One Variance Change 

A T K Modeofk*  Meanofk* SDofk*  

NOTE: There are 1.000 replicates for each row of the table 

and c and v are the hyperparameters of the inverted gamma 
used prior for the 7,, i = 0, . . . ,NT (see InclBn 199 1). 

A systematic way of using the posterior odds to determine 
the number of variance changes on a given series is to cal- 
culate K,,,-, for n = l ,  2, . . . . A decision can be reached 
without specifying a loss function if a maximum number of 
changepoints Nma, is specified. Calculate Kn,n-I for n = 1, 
. . . ,N,,,,,; from these odds, obtain p(NT I a,  NT INma,) and 
choose the value of NT for which this conditional probability 
is maximum. 

4.2. 	 Results of Part One: Series With One 
Changepoint 

Table 4 gives the frequency distribution of I\jT obtained 
with the ICSS algorithm, with likelihood ratio tests and with 
the log posterior odds. The column corresponding to the 
"correct identifications" has been highlighted. For the like- 
lihood ratio procedure, we follow a sequence of likelihood 
ratio tests up to a maximum value of two changepoints. 

We conclude that for series of 100 observations, it is hard 
to detect a small variance change (variance ratio A = 2)-
particularly when it appears at the beginning of the series 
and we are using the ICSS algorithm. Once we have 200 
observations or the variance ratio is larger (A = 3), the correct 
identifications occur more than 80% of the time if the 
changepoint is in the middle of the series. The ICSS algorithm 
performance improves notably as we have longer series and 
larger variance ratios. The Bayesian procedure is the best for 
A = 2 and gives comparable results to the other approaches 
with A = 3. 

4.3. 	 Results of Part Two: Series With Two 
Changepoints 

The frequency distribution of & is presented in Table 5, 
with the column corresponding to the correct identifications 
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in bold type. For series of 100 observations, we find only 
one changepoint most of the time. The most difficult situ- 
ation is when the variances change in a monotone way; that 
is, the variance increases at the first change point and in- 
creases again at the second change point. If this is the case, 
then it is necessary to have a large number of observations 
(e.g., 500), to be able to get I\jT = 2 more than half of the 
time. 

In almost every instance with 200 observations or more, 
the ICSS algorithm gives better results than the likelihood 
ratio tests. The best results across location of the points of 
change are at ( K ]  / T, K ~ /T )  = (.33, .67), when the intervals 
between changepoints are of equal length. Across the six 
possible permutations of variances, the best results are found 
mostly when the large variance is in the middle, (A l ,  A2) 
= (4, 2). 

The posterior odds ratio was not obtained for series with 
T = 500, because it would have required a total of 1,358 
CPU hours. In fact, the runs with T = 200 for the log posterior 
odds have only 100 replicates instead of the 1,000 in the rest 
of the runs in the experiment. 

4.4 Sampling Distribution of k*  

The same simulation provides information about the 
sampling distribution of k*, the point where maxk 1 Dk(a 
[ 1 : T I )  I is attained. This distribution is skewed; k* is biased 
towards the middle of the series. What makes the ICSS al- 
gorithm work well is that the mode of k* is exactly at the 
point where the change in variance occurs. The values of k* 
become increasingly concentrated around the true change- 
point as the sample size increases or as the variance ratio 
increases. 

Tables 6 and 7 present summaries of this distribution. 
Table 6 corresponds to series with one changepoint. Table 
7 presents the results for series with two changepoints, for 
which the mode of k* is attained at the change point where 
E[Dk]  is largest, in absolute value (see Fig. 3). 

4.5 	 The ICSS Algorithm Applied to Residuals 

The same series used in the first part of the simulation 
experiment were used to obtain an autoregressive process of 
order 1: Y, = 6Y,-, + a,. Then the ICSS algorithm was ap- 
plied to the residuals 6, = Y,- $Y,-~ ,  where 4is the ordinary 
least squares estimate of 6.Table 8 shows the results for two 
values of 6,the percentage of series for which &= 1 is very 
close to the figures presented in Table 4. Further research is 
underway and will be reported elsewhere. 

4.6 CPU Time Requirements 

One of the concerns that motivated the design of the ICSS 
algorithm is the heavy computational burden involved in 
the calculation of posterior odds. When using likelihood ratio 
tests, the burden is partially alleviated by obtaining the max- 
imum of the log-likelihood function using the Baufays and 
Rasson (1985) algorithm. Nonetheless, it is still a heavy 
computation when dealing with series of hundreds of obser- 
vations and several changepoints. The ICSS algorithm avoids 
calculating a function at all possible locations of the change- 
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Table 7. Summaries from the Sampling Distribution of k * for Series With Two Variance Changes 

(4,Ad T ( ~ 1 ,KZ)  Mode of k *  Mean of k *  SD of k' 

Table 8. Percentage of N, = 1 Obtained with the ICSS Algorithm for Series With One Variance Change, Residuals from AR(1) 

NOTE: For series with A = 1, there are 10.000 replicates for the ICSS algorithm; all other cases have 1.000 replicates 
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points by looking for the changepoints in an iterative manner. 
On average, after cutting and analyzing the pieces, we need 
to perform O ( T )  operations. This section presents actual 
CPU times obtained in the simulations described earlier. 

The results can be summarized in the following regression 
models, estimated by least squares. Let CPUmrepresent the 
average CPU time (in seconds) taken by each method: m 
= B is posterior odds, m = L is maximum likelihood, and 
m = D is for the ICSS algorithm using Dk.  Define three 
indicator variables: X ,  = 1 if NT = 1, X2 = 1 if NT = 2, and 
X3 = 1 i f N T =  3. 

The coefficients of log( T) indicate the order of magnitude 
of the CPU time required. The equation for CPU implies 
that the order of magnitude increases for larger NT. In the 
case of the likelihood ratio approach, the CPU time is of the 
same order for NT = 2 and NT = 3, roughly O ( T ~ ) .  The 
model for the CPU time of the ICSS algorithm shows that 
the dependence on the series length is the same for all values 
of I\jr. This result clearly shows the different costs of using 
each of the methods presented here. It and the simulation 

results in Tables 4-8, lend support to the recommendation 
to use the ICSS algorithm when we need to analyze long 
series with multiple change points. 

APPENDIX A: APPROXIMATE EXPECTED 

VALUE OF Dk 


Let { a, } be a sequence of independent Normal random variables, 
with mean 0 and variance a:. For a fixed value of k, take a second- 
order Taylor expansion of the ratio Ck/CTabout the value (E[Ck] ,  
E [ CT]) to get the expected value of Dk as 

where 

We evaluate expressions (A.2) and (A.3) for each of three cases: 

1 .  The series has homogeneous variance, NT = 0, a: = u2,  for 
all t. 

2. The series has one changepoint, NT = 1 at K I ,  a: = 7; for t 
-
- 1, . . . ,  K ]  a n d a :  = 7:fort = K ,  + 1, . . . , T. 

3. There are two changepoints, NT = 2, located at K I  and K2. The 
corresponding variances are 7; for t  = 1 , .  . . ,K , ,7: fo r t  = K ,  -b 1, 
. . . , K2, a n d ~ z f o r t  =K2 + I , .  . . , T .  

Under the variance homogeneity, NT = 0,E[Ck]= kg2, E[CkCT] 
= k ( T  + 2)a4,  and E[Dk]  -- 0. 

When there is one variance change at K I ,  

and 

Hence, in terms of the ratio of variances A, = 7:/7;, 

In the case of two variance changes, the second-order approximation to E [ D k ]  can be evaluated using 



923 Incl6n and Tiao: Retrospective Detection of Changes in Variance 

and 
E[CkCT]= k(KI + 2 ) ~ : +  ~ ( K ~ - K ~ ) T ~ T : +  1I~ S K ,~ ( T - K ~ ) T ~ T :  

APPENDIX 6: PROOF OF THEOREM 1 

Let t, = a f  - a:, so E [ t , ]  = 0 and a 2  = var(t i)  = 2u:. Let 

x n ( t )= -L s r n l l  + (nt  - [n t l )  t [ n ~ ~ + ~ ,  
ufi a 6  


where S, = +n. . - + in.By Donsker's thgorem (Billingsley 1968, 

thm. lo.]), X, -L W, so {X,(t) - tX,(l)) -L WO(Billingsley 1968, 
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